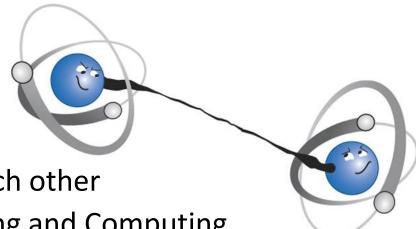
Will Quantum Always Remain Basic Research or is it Ready to Power Great Products?

Optical Fiber Communication Conference
Rump Session
Chris Cole, Moderator
Adviser, II-VI Incorporated

8 March 2022


Quantum Topics in Rump Session Presentations

In the Presentations	Not in the Presentations		
 Networking, for example: 	 Sensing, for example: 		
 Quantum Computing Platform (QCP) 	 Superconducting Quantum 		
Networking	Interference (SQUID) Magnetometer		
 Quantum Information Processing 	 Optical Lattice Clock (OLC) 		
(QIP) Networking	 Challenging, but not controversial 		
 Cryptography, for example: 	 Computing, for example: 		
 Quantum Key Distribution (QKD) 	 Qubits 		
 Quantum Error Correction (QEC) 	 Quantum Processing Unit (QPU) 		
 Quantum Safe Cryptography (QSC) 	 Controversial, but not a great OFC fit 		

- There is broad agreement about the science
- The debate is about feasibility, practicality, and timeliness of commercialization

Quantum Enthusiasts vs. Sceptics Teams Debate Format

- Moderator, Chris Cole, and Co-Moderator, Emina Soljanin, introduce the Session
- Followed by alternating Quantum Enthusiasts vs. Sceptics Team Member debates
- Each Provocateur gets 5 mins to present
- The audience then gets 5 mins to give:
 - tough and provocative questions
 - insightful comments
 - different perspectives
 - short, concise and to the point remarks
 - o challenge the Moderators, Provocateurs and each other
 - o any topic is fair game, including Quantum Sensing and Computing
- May Quantum Entanglement (the Force) be with you

Quantum Rump Session Schedule

PPT start	Q&A start	Name	Affiliation	Character	PPT start	Q&A start	Name	Affiliation	Character
Unentangles the Sides		Moderator			Balances the Force		Co-moderator		
7:35	n/a	Chris	II-VI	Han	7:40 7:45	7.45	Emina	Rutgers	Maz
		Cole		Solo		Soljanin	University	Kanata	
Light Side Serv	Light Side Serves the Force Quantum Enthusiasts Team Jedi Knight			n Jedi Knight	Dark Side Oppo	ses the Force	Quantum	Sceptics Team	Sith Lord
7:50 7:55	7:55	Bruno	ID	Mace	8:00 8:05	0·0E	Peter	Nubis	Darth
7.30	7.55	Huttner	Quantique	Windu		6.05	Winzer	Comm.	Sidious
8:10	8:15	Yong	Quantum	Qui-Gon	0.20	8:20 8:25	Charles	MITRE	Darth
		Zhao	CTek	Jinn	6.20		Clancy		Maul
8:30	8:35	Andrew	British	Obi-Wan	8:40 8:45	Q·15	Glenn	Verizon	Darth
6.30	0.33	Lord	Telecom	Kenobi		Wellbrock		Vader	
8:50	8:55	Mekena	Lawrence	Skywalker	9:00	9:05	Takehisa	Mie	Kylo
		Metcalf	Berkeley Lab	Ren			Iwakoshi	University	Ran
9:10	9:15	Inder	ESnet	Yoda	9:20 9:25	0.25	Scott	MIT Lincoln	Count
		Monga				9.23	Hamilton	Laboratory	Dooku
9:30	9:35	Audience Poll			9:35	n/a		End	

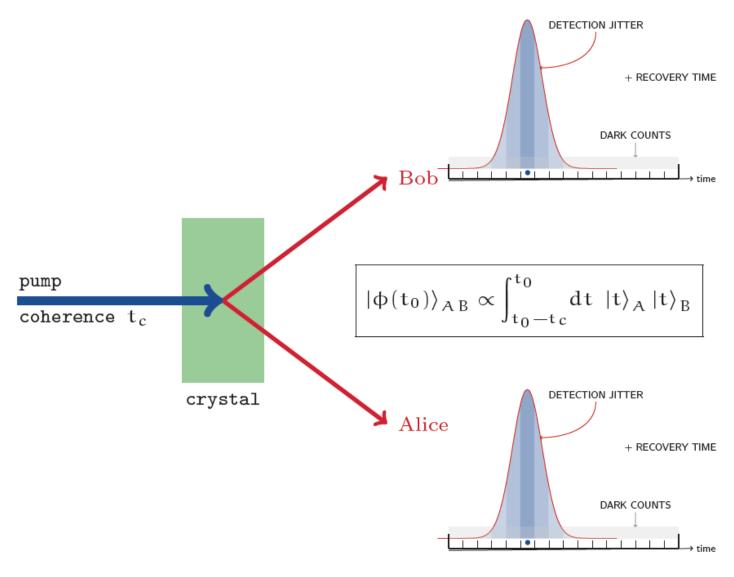
QKD Entangled in Noisy (Down) Time

Emina Soljanin, Co-moderator

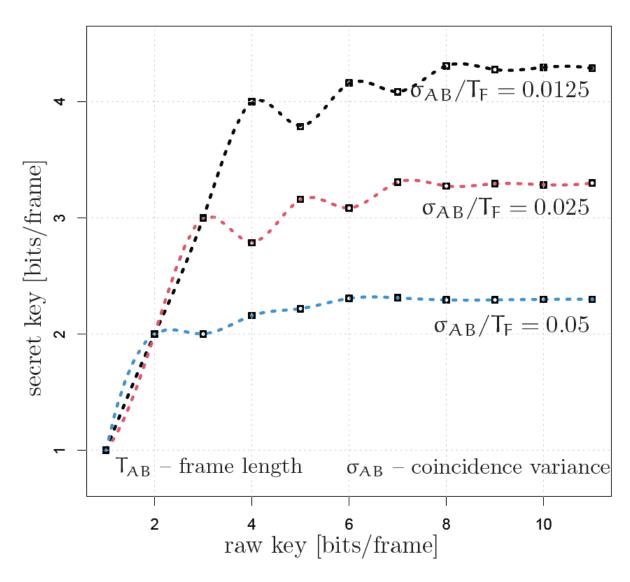
Professor, Electrical and Computer Engineering

Rutgers University

8 March 2022


Maz Kanata

"Maz has felt the Force ebb and flow, seeking an elusive balance between darkness and light."



Time Carries Many Bits but Detectors Cannot Tell

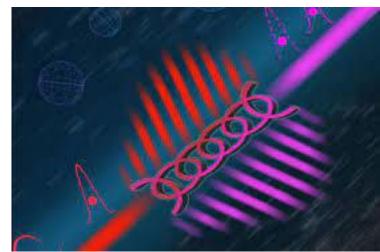
- A special source generates time-entangled photon pairs
- Entangled photons arrive to Alice & Bob simultaneously
- Alice & Bob detect photon arrivals by imperfect detectors
- The raw key is extracted from "coincidental" arrival times

High Raw Key Rate Does not Mean High Secret Key Rate

Raw-key is extracted by time binning

- the smaller the time bin
- the higher the raw key rate
- the more Alice & Bob disagree
- the more bits must be sent over the public channel for key reconciliation

The secret key rate becomes saturated


Can time-entanglement QKD live up to its promise?

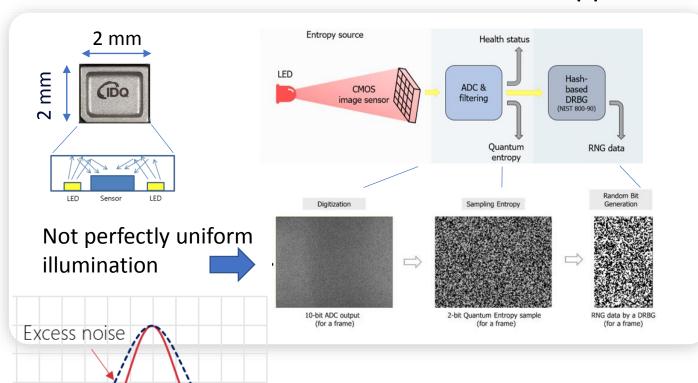
VS.

Mace Windu vs. Darth Sidious

Quantum is Already Powering Great Products

Bruno Huttner Director of Quantum Strategic Initiatives

ID Quantique


Mace Windu

March 2022

Quantum at Small Scale

Quantum-based Randomness for all Your Appliances

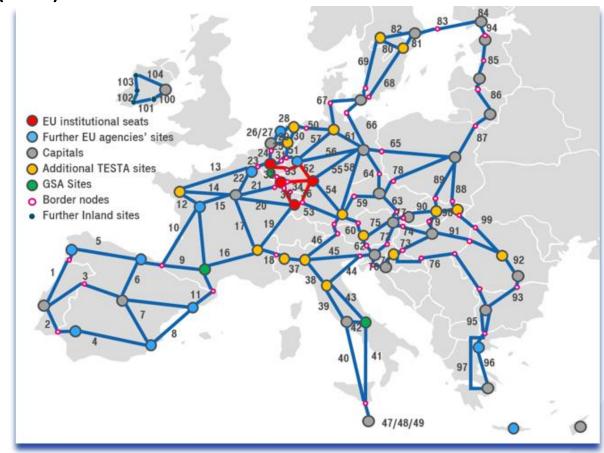
Application Example:

Quantum-Safe
Messaging with
Quantum Random
Number Generator
(QRNG) and added
PQC layer

The first products for mass applications are already available

40 50 60 70 80 90 100 110 120 130 140 150 Number of counts

Quantum at Large Scale

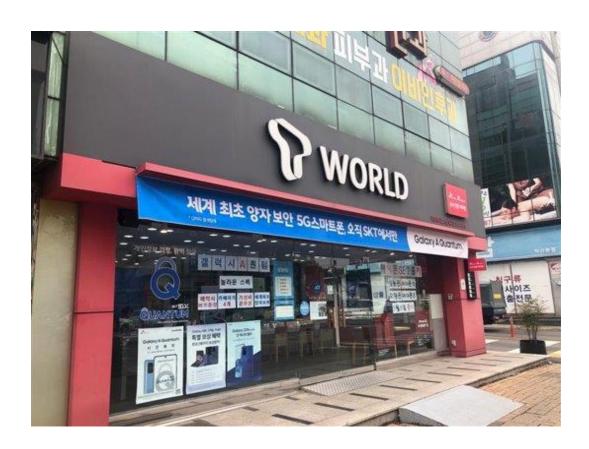


EU Quantum Communication Infrastructure (QCI) Initiative

- Part of EU Cybersecurity Strategy
- Protects sensitive data and infrastructures
- Terrestrial and space components
- Integrates into existing infrastructure

QCI Timeline

- Preliminary phase (2020-2022):OpenQKD consortium and QKD Testbeds
- 1st phase (2022-2023): National Phases
- 2nd phase (2024 and beyond): Roll out
- Fully operational by 2027

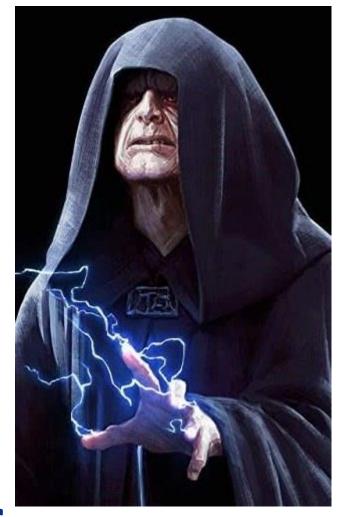


Pan-European quantum keys will be available for all

Quantum to the Masses

The first products are already available...

and it is only the beginning!


8 March 2022

Quantum Technologies: Fund-Raising Through Fear

Peter Winzer, Founder and CTO 8 March 2022

Darth Sidious

A Brief History of Technology Adoption

Technology	Research	Large-Scale Commercial	Lag [Years]
Transistor	1947	1953	6
Optical Fiber	1965	1976	11
Distributed Feedback Laser	1972	1987	15
Ethernet	1973	1983	10
Erbium-Doped Fiber Amplifier	1986	1990	4
Digital Coherent Detection	1991	2008	17
Fusion Reactors	1947	None	>75
Quantum Computing	1980	None	>41
Quantum Key Distribution	1984	None	>38

https://www.apriorinetwork.com/

Experimental demonstration of a 4,294,967,296-QAM-based Y-00 quantum stream cipher template carrying 160-Gb/s 16-QAM signals

XI CHEN,^{1,*} KEN TANIZAWA,² PETER WINZER,³ PO DONG,³ JUNHO CHO,¹ FUMIO FUTAMI,² KENTARO KATO,² ARGISHTI MELIKYAN,¹ AND K. W. KIM¹

Fundamental research vs. real-world solutions for real-world needs

- Research fund-raising based on public fear-raising
- Example QKD: Security = Secure Key + Secure Encryption Algorithm

Existing solutions are sufficient

Not solved by QKD

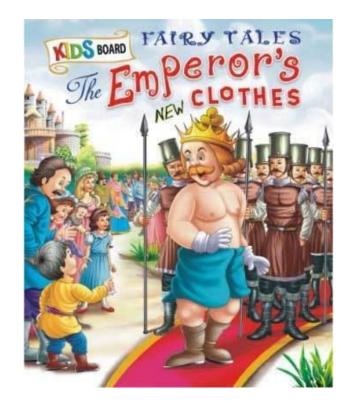
Alternative solutions exist (only known secure algorithm is the One-Time Pad)

Science vs. Engineering – And the Danger Zone

"Fundamental" Research (Science) **Cross-fertilization**

Danger!!!

"Applied"
Research
(Engineering)


Ultimate goal:

Discovery:

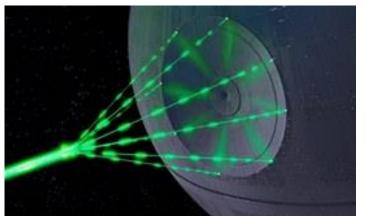
understanding the world

Does <u>not</u> need any justification (particularly fear-raising!)

Society chooses to afford it

Ultimate goal:

Invention:


changing the world

<u>Must</u> have a practical justification

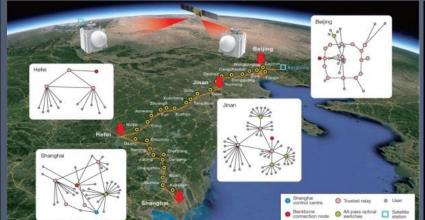
Paid for by technical innovations

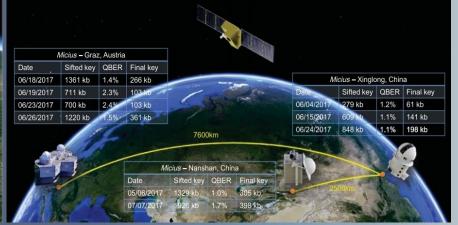
Thank You!

Qui-Gon Jinn vs. Darth Maul

Quantum is Powering Great Products!

Dr. Yong Zhao
Vice Chairman of the Board
QuantumCTek Co., Ltd.


8 March 2022

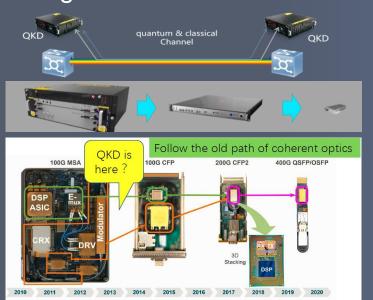


Great Products are Happening

Quantum Secured Infrastructure — Q-Crypto Networks

The first stage —— QKDN

Cryptography


Algorithm | Key management

Long term security

QKD

High security strength Independence

Integrated & Cost-effective

90.0%
80.0%
70.0%
60.0%
50.0%
40.0%
30.0%
20.0%
10.0%
2010 2012 2014 2016 2018 2020 2022 2024 2026

Relative cost per kbps(50km key rate)

Standardized, Certified & Reliable

Quantum Networking & Cryptography

OFC

20

Rump Session

8 March 2022

No Single Technology can Defeat All Security Threats

QKD security is theoretically clear

PQC security is theatrically uncertain: security ≠ mathematical problem complexity

Both QKD and PQC need more testing and analysis, and both improve with the back and forth of attack and defense

21

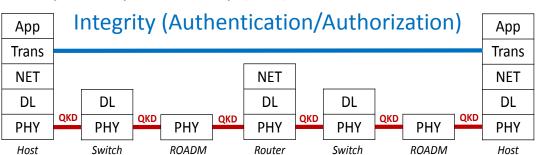
PQC (Math)

QC (Physics)

May the Quantum Be With You

Security: E2E with PQC

T. Charles Clancy, Ph.D.
Fellow of the IEEE
SVP, MITRE Corporation
8 March 2022



Darth Maul

Security Must be End to End

Transport Layer Security (TLS) + PQC - E2E - Confidentiality,

Hop-by-Hop Only, Confidentiality Only

QKD: • Forward Secrecy

- Unconditional Security
- Requires Independent Unconditionally Secure Authentication
- Vulnerable to MITM

TLS + • Authentication and Key Agreement

PQC: • Forward Secrecy (for most ciphers)

- Security conditioned on P≠NP
- TLS itself has history of vulnerabilities

Survey of TLS vulnerabilities, July 2021, Wikipedia

Attacks	Security						
Attacks	Insecure Depends		Secure	Other			
Renegotiation attack	0.1% support insecure renegotiation	<0.1% support both	99.2% support secure renegotiation	0.7% no support			
RC4 attacks	0.4% support RC4 suites w/ modern browsers	6.5% support some RC4 suites	93.1% no support	N/A			
TLS Compression (CRIME attack)	>0.0% vulnerable	N/A N/A		N/A			
Heartbleed	>0.0% vulnerable	N/A	N/A	N/A			
ChangeCipherSpec injection attack	0.1% vulnerable and exploitable	0.2% vulnerable, not exploitable	98.5% not vulnerable	1.2% unknown			
POODLE attack against TLS (against SSL 3.0 not included)	0.1% vulnerable and exploitable	0.1% vulnerable, not exploitable	99.8% not vulnerable	0.2% unknown			
Protocol downgrade	6.6% Downgrade defence not supported	N/A	72.3% Downgrade defence support	21.0% unknown			

Focus on PQC for Quantum Safe Cryptography

- QKD does not actually address the Internet threat model
- PQC does, and should be the focus for building quantum-safe security for the Internet
- Bruce Schneier, WIRED Security, Oct. 15, 2008:

Quantum Cryptography: As Awesome As It Is Pointless

24

... as awesome and pointless as a double-bladed light saber.

Quantum Cryptography: As Awesome As It Is Pointless

Quantum cryptography is back in the news, and the basic idea is still unbelievably cool, in theory, and nearly useless in real life. The idea behind quantum crypto is that two people communicating using a quantum channel can be absolutely sure no one is eavesdropping. Heisenberg's uncertainty principle requires anyone measuring a quantum system to [...]

Obi-Wan Kenobi vs. Darth Vader

QKD is a Steppingstone to a Quantum Internet

Andrew Lord
Sr. Manager of Optical Research, BT
Visiting Professor, Essex University

Ben Obi-Wan Kenobi

8 March 2022

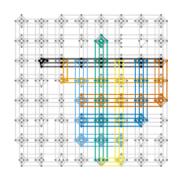
QKD is Real, Secure and the First Step on the Quantum Trajectory

- BT launching a QKD network service around London in April 2022 – customers signed up
- Mathematical-based encryption techniques included (not an either-or)
- Quantum security enables selling services over lots of BT owned optical fibre.
- Mathematical crypto is not reliable:
 - RSA / DH already broken by Shor¹
 - Lattice codes are under threat or already broken for all we know
 - Backdoors are built-in
- Trajectory towards a quantum network, interconnecting quantum and classical compute resources

QKD Service QKD over satellite Trusted nodes **Point** to Point

¹ Peter W. Shor, "Algorithms for quantum computation: discrete logarithms and factoring". Proceedings 35th Annual Symposium on Foundations of Computer Science, Nov. 1994.

The Quantum Force is With Us Now


QKD Supports the BT Ambition to be the National Purveyor of Trust

https://arxiv.org/pdf/2006.14057.pdf

Two quantum Ising algorithms for the Shortest Vector Problem: one for now and one for later

David Joseph, 1, 2 Adam Callison, 2 Cong Ling, 1 and Florian Mintert2

- ¹ Electrical and Electronic Engineering Department, Imperial College London
- ² Physics Department, Imperial College London Phys. Rev. A 103, 032433, 26 March 2021

logical qubits embedded as qubit chains (of physical qubits) into the chimera topology

Universal Adoption is Key to Scalable Networking

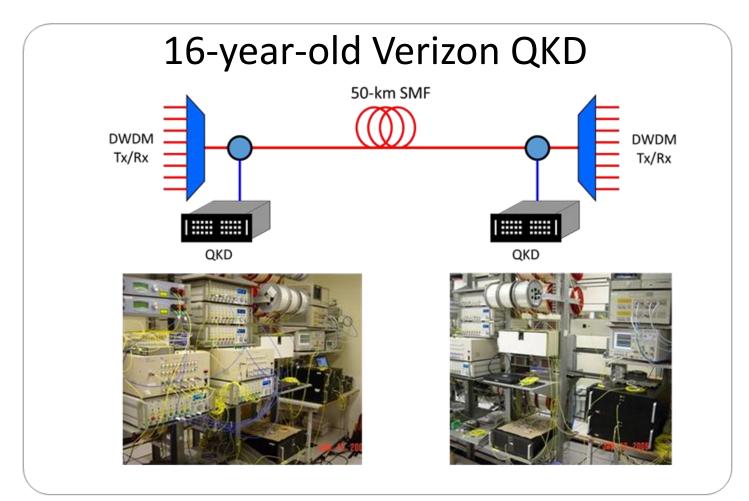
Glenn Wellbrock
Director, Optical Transport
Network Architecture,
Design and Planning
Verizon

8 March 2022

Darth Vader

Practical = Great Products

- NISTIR 8309: Status Report on the Second Round of the NIST Post-Quantum Cryptography (PQC) Standardization Process
- Quantum-resistant cryptography (QRC)
- Standards based
- Resistant to classical and quantum computer code breaking (forward secrecy)
- Resistant to side-channel attacks
- Interoperable with existing communications protocols and networks
- Easily implemented with conventional electronics
- Drop-in replacement for exiting cryptography
- Universal, simple, flexible, free



National Institute of

Standards and Technology

U.S. Department of Commerce

Great Science (2) Great Products

Number sold to date by Verizon rhymes with Ziro (the Hutt)

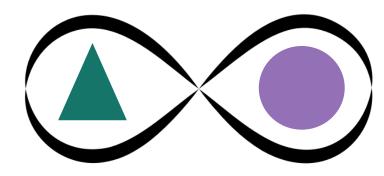
Reference: TJ Xia and G. Wellbrock et al., OFC 2006, OTuJ7. (Ref-416)

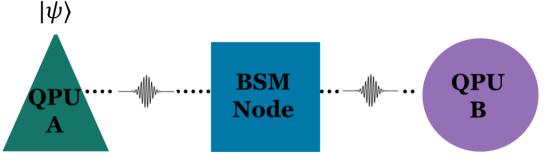
8 March 2022

Skywalker Rey vs. Kylo Ren

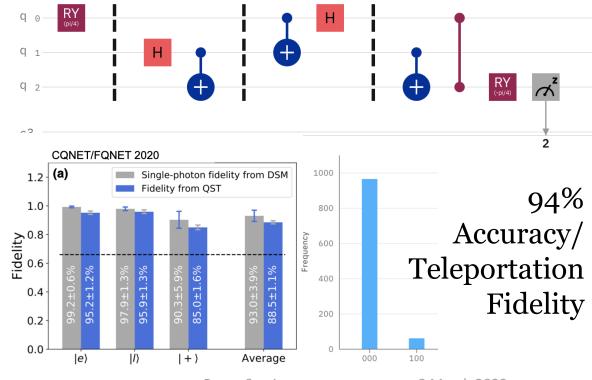
Mekena Metcalf Applied Math and Computational Research Division, Berkeley Lab 8 March 2022

LAWRENCE BERKELEY NATIONAL LABORATORY



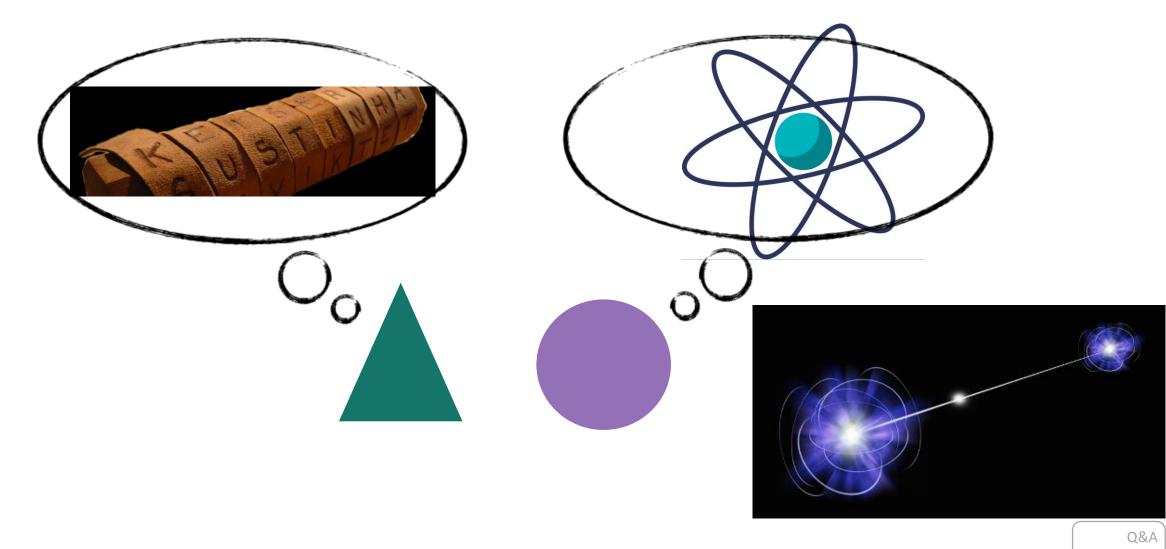

Quantum Revolution 2.0

Put properties of quantum mechanics like measurement, entanglement and superposition to commercial use



A Bell State is a maximally entangled state

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$



Teleportation on IBM Montreal

Stay in the Past or Join the Future?

Quantum Networks and QKD Are Not Ready for Business

Takehisa Iwakoshi
Mie University
Dept. of Information Engineering
8 March 2022
iwakoshi@cs.info.mie-u.ac.jp

Kylo Ren (Ben Solo)

QKD Security is Not Proven

Experimental

- Impossible to prove the security of QKD systems because there are no attackers to launch collective/coherent attacks.
- Impossible to list all unknown device-imperfections and side-channels.

Theoretical

- Many researchers believe Shor and Preskill proved the equivalence of Prepareand-Measure QKDs and Quantum-Error-Correction QKDs in 2000.
- Counter examples show the former can never supply IID keys for One-Time Pad, in Shannon sense, unlike the latter.

Cryptography Expert Consensus

- NSA/USA, ENISA/EU, NCSC/UK, ANSSI/France do not recommend QKD.
- For the whole system to be Information—Theoretic Secure (ITS), QKD requires ITS authentication procedures, which QKD cannot do standalone.
- QKD requires hardware patches and upgrades, unlike software cryptography.
- QKD is vulnerable to Denial-of-Service attacks because the signals are fragile.

QKD is not Practical

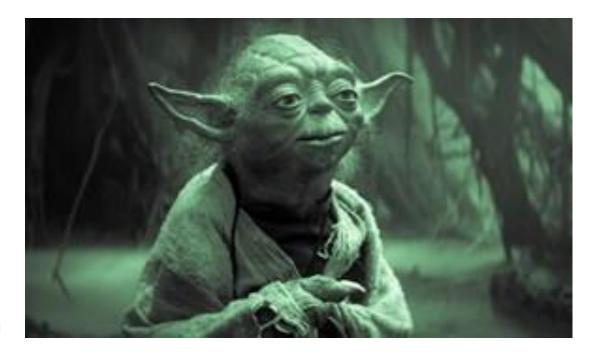
 QKD will remain in everlasting R&D phase with no products realized

 QKD researchers should investigate better approaches, for example: Y00 Quantum Cryptography using bright quantum states

Detailed references and appendix:
 https://www.researchgate.net/publication/357791716

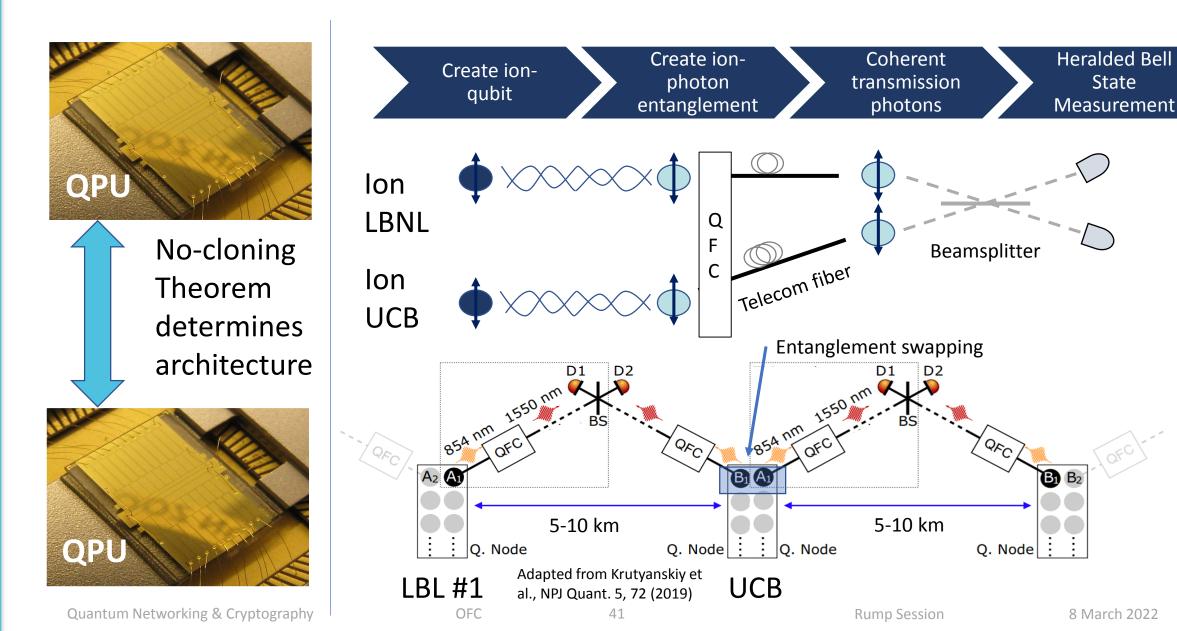
Fall into the Dark Side of the Quantum Force

Yoda vs. Count Dooku


39

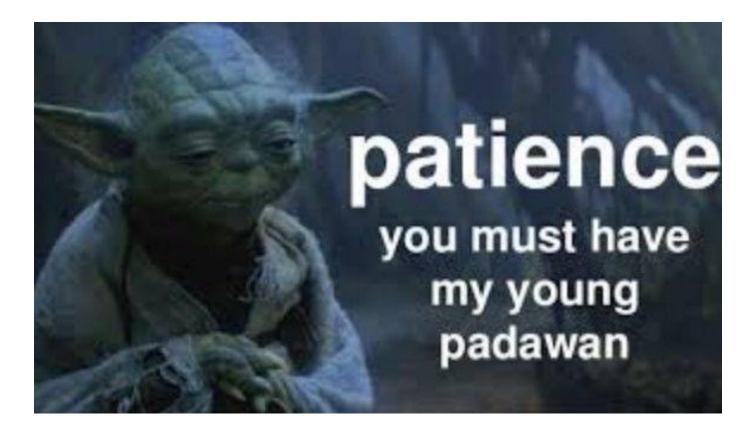
Quantum Communication (teleportation) Enables Scalable Quantum Computing

Inder Monga,
Executive Director,
Energy Sciences Network
Lead Principal Investigator,
Quantum Application
Network Testbed (quant-net)


8 March 2020

Yoda

Quantum Teleportation transports quantum state


Heralded Bell

State

8 March 2022

Are we there yet?

Quantum Networking based on teleportation commercialization requires a new ecosystem of materials, processes, devices, components, sub-systems, systems and protocols.

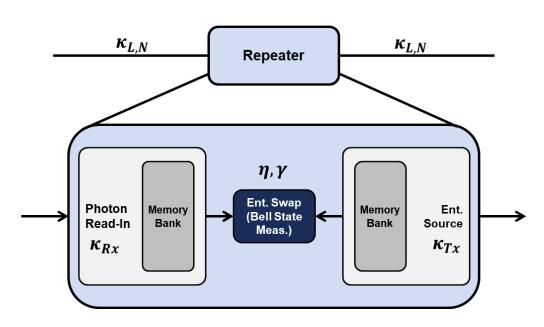
Teleportation with ions: Riebe et al. Nature 429, 734 (2004), Barrett et al., Nature 429, 737 (2004)

42

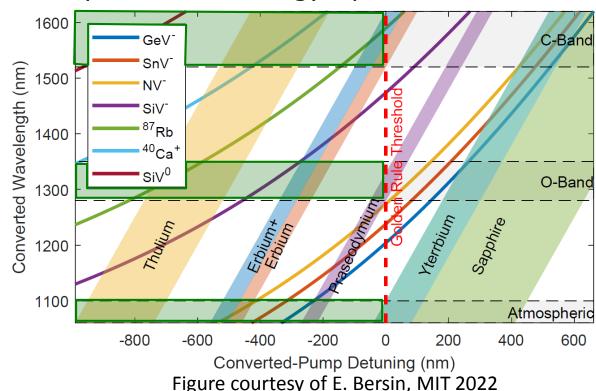
Quantum (Teleportation) Still Requires Basic Technology Development

Scott Hamilton
Leader, Optical Communications
Technology Group
MIT Lincoln Laboratory

8 March 2022



Count Dooku

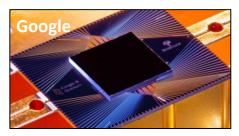


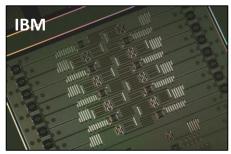
Should Industry Develop Distributed Quantum Networks?

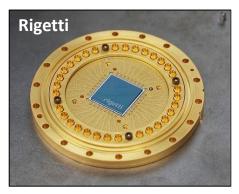
- Each entanglement swap has usage efficiency $oldsymbol{\eta}$
 - Limited memory, Bell State resolution
 - Total Rate: $\kappa_{L,N} \kappa_{Rx} \kappa_{Tx} \eta^N$
- Each BSM has fidelity efficiency γ
 - Memory decoherence, heralding noise
 - Total Fidelity: $\sim \gamma^N$

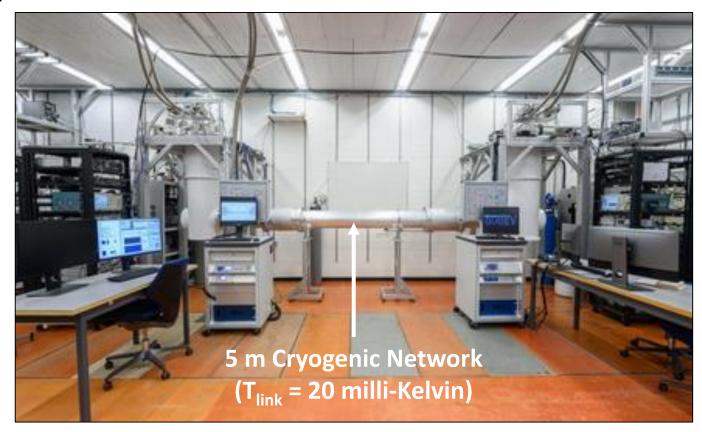
Repeater Technology Options are Limited

For distributed applications, we need to figure out how to build a repeater before Industry jumps into Quantum Network development

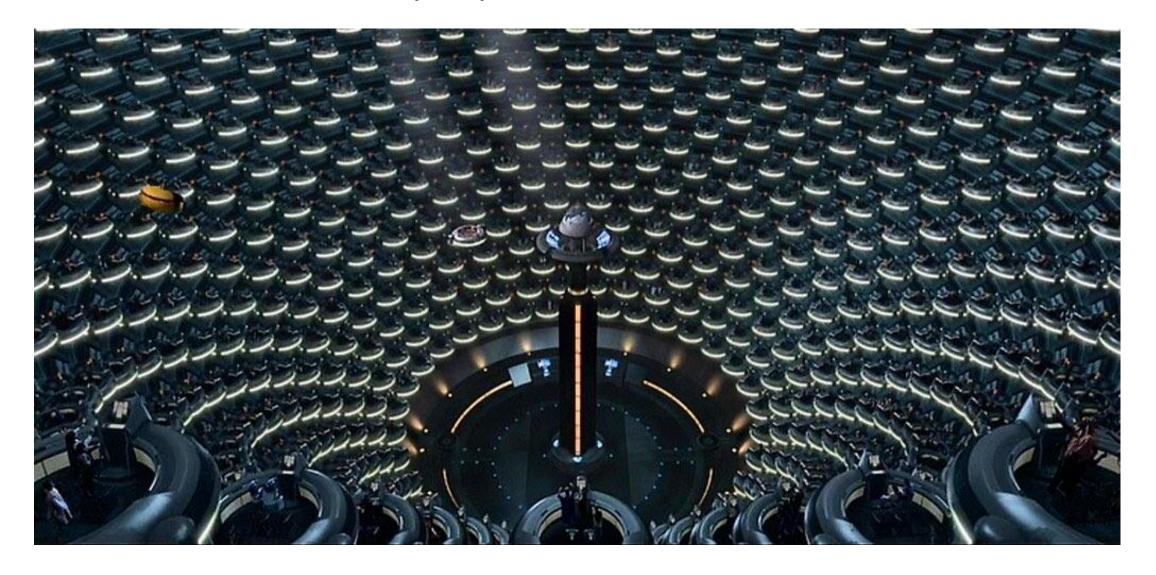

LINCOLN LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY




Fundamental use-case about Quantum is unanswered


Is this what Industry's First Quantum Networks Will Look Like?

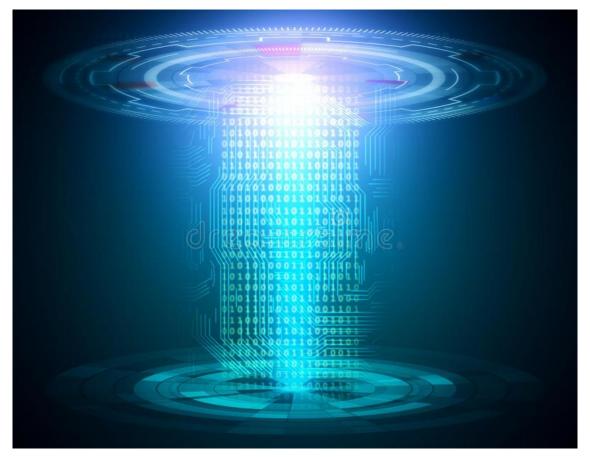
45



S. Storz, APS March Meeting 2020

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Move for a Vote of (No) Confidence in Quantum Products



Audience Poll

No.	Question	Vote #	Vote %
1	Will Quantum Networking & Cryptography Always Remain Basic Research?		
	Yes	16	28
	No	41	72
2	Is Quantum Networking & Cryptography Ready to Power Great Products?		
	Yes	28	42
	No	38	58
3	Which character would you rather assume?		
	Jedi Knight	43	66
	Sith Lord	22	34

Rump Session

OFC Rump Session on Quantum Networking & Cryptography

Scotty, Quantum Teleport us up!

Rump Session